Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Chemother ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38580055

ABSTRACT

INTRODUCTION: Campylobacteriosis stands as one of the most frequent bacterial gastroenteritis worldwide necessitating antibiotic treatment in severe cases and the rise of quinolones-resistant Campylobacter jejuni poses a significant challenge. The predominant mechanism of quinolones-resistance in this bacterium involves point mutations in the gyrA, resulting in amino acid substitution from threonine to isoleucine at 86th position, representing more than 90% of mutant DNA gyrase, and aspartic acid to asparagine at 90th position. WQ-3334, a novel quinolone, has demonstrated strong inhibitory activity against various bacteria. This study aims to investigate the effectiveness of WQ-3334, and its analogues, WQ-4064 and WQ-4065, with a unique modification in R1 against quinolones-resistant C. jejuni. METHODS: The structure-activity relationship of the examined drugs was investigated by measuring IC50 and their antimicrobial activities were accessed by MIC against C. jejuni strains. Additionally, in silico docking simulations were carried out using the crystal structure of the Escherichia coli DNA gyrase. RESULT: WQ-3334 exhibited the lowest IC50 against WT (0.188 ± 0.039 mg/L), T86I (11.0 ± 0.7 mg/L) and D90 N (1.60 ± 0.28 mg/L). Notably, DNA gyrases with T86I substitutions displayed the highest IC50 values among the examined WQ compounds. Moreover, WQ-3334 demonstrated the lowest MICs against wild-type and mutant strains. The docking simulations further confirmed the interactions between WQ-3334 and DNA gyrases. CONCLUSION: WQ-3334 with 6-amino-3,5-difluoropyridine-2-yl at R1 severed as a remarkable candidate for the treatment of foodborne diseases caused by quinolones-resistant C. jejuni as shown by the high inhibitory activity against both wild-type and the predominant quinolones-resistant strains.

2.
Microb Drug Resist ; 29(12): 552-560, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37792363

ABSTRACT

Although many drug-resistant nontyphoidal Salmonella (NTS) infections are reported globally, their treatment is challenging owing to the ineffectiveness of the currently available antimicrobial drugs against resistant bacteria. It is therefore essential to discover novel antimicrobial drugs for the management of these infections. In this study, we report high inhibitory activities of the novel fluoroquinolones (FQs; WQ-3810 and WQ-3334) with substitutions at positions R-1 by 6-amino-3,5-difluoropyridine-2-yl and R-8 by methyl group or bromine, respectively, against wild-type and mutant DNA gyrases of Salmonella Typhimurium. The inhibitory activities of these FQs were assessed against seven amino acid substitutions in DNA gyrases conferring FQ resistance to S. Typhimurium, including high-level resistant mutants, Ser83Ile and Ser83Phe-Asp87Asn by in vitro DNA supercoiling assay. Drug concentrations of WQ compounds with 6-amino-3,5-difluoropyridine-2-yl that suppressed DNA supercoiling by 50% (IC50) were found to be ∼150-fold lower than ciprofloxacin against DNA gyrase with double amino acid substitutions. Our findings highlight the importance of the chemical structure of an FQ drug on its antimicrobial activity. Particularly, the presence of 6-amino-3,5-difluoropyridine-2-yl at R-1 and either methyl group or bromine at R-8 of WQ-3810 and WQ-3334, respectively, was associated with improved antimicrobial activity. Therefore, WQ-3810 and WQ-3334 are promising candidates for use in the treatment of patients infected by FQ-resistant Salmonella spp.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Salmonella Infections , Humans , DNA Gyrase/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Anti-Bacterial Agents/pharmacology , Bromine/therapeutic use , Microbial Sensitivity Tests , Fluoroquinolones/therapeutic use , Anti-Infective Agents/pharmacology , Salmonella Infections/microbiology , DNA/therapeutic use , Drug Resistance, Bacterial/genetics
3.
Microbiol Spectr ; 11(6): e0133023, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37795999

ABSTRACT

IMPORTANCE: Quinolone-resistant nontyphoidal Salmonella is a pressing public health concern, demanding the exploration of novel treatments. In this study, we focused on two innovative synthetic fluoroquinolones, WQ-3034 and WQ-3154. Our findings revealed that these new compounds demonstrate potent inhibitory effects, even against mutant strains that cause resistance to existing quinolones. Hence, WQ-3034 and WQ-3154 could potentially be effective therapeutic agents against quinolone-resistant Salmonella Typhimurium. Furthermore, the data obtained in this study will be baseline information for antimicrobial drug development.


Subject(s)
Quinolones , Quinolones/pharmacology , Salmonella typhimurium/genetics , DNA Gyrase/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Fluoroquinolones/pharmacology , Drug Resistance, Bacterial/genetics
4.
Microbiol Spectr ; 11(3): e0508822, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37067420

ABSTRACT

Mycobacterium avium, a member of the M. avium complex (MAC), is the major pathogen contributing to nontuberculous mycobacteria (NTM) infections worldwide. Fluoroquinolones (FQs) are recommended for the treatment of macrolide-resistant MACs. The association of FQ resistance and mutations in the quinolone resistance-determining region (QRDR) of gyrA of M. avium is not yet clearly understood, as many FQ-resistant clinical M. avium isolates do not have such mutations. This study aimed to elucidate the role of amino acid substitution in the QRDR of M. avium GyrA in the development of FQ resistance. We found four clinical M. avium subsp. hominissuis isolates with Asp-to-Gly change at position 95 (Asp95Gly) and Asp95Tyr mutations in gyrA that were highly resistant to FQs and had 2- to 32-fold-higher MICs than the wild-type (WT) isolates. To clarify the contribution of amino acid substitutions to FQ resistance, we produced recombinant WT GyrA, GyrB, and four GyrA mutant proteins (Ala91Val, Asp95Ala, Asp95Gly, and Asp95Tyr) to elucidate their potential role in FQ resistance, using them to perform FQ-inhibited DNA supercoiling assays. While all the mutant GyrAs contributed to the higher (1.3- to 35.6-fold) FQ 50% inhibitory concentration (IC50) than the WT, Asp95Tyr was the most resistant mutant, with an IC50 15- to 35.6-higher than that of the WT, followed by the Asp95Gly mutant, with an IC50 12.5- to 17.6-fold higher than that of the WT, indicating that these amino acid substitutions significantly reduced the inhibitory activity of FQs. Our results showed that amino acid substitutions in the gyrA of M. avium contribute to FQ resistance. IMPORTANCE The emergence of fluoroquinolone (FQ) resistance has further compounded the control of emerging Mycobacterium avium-associated nontuberculous mycobacteria infections worldwide. For M. avium, the association of FQ resistance and mutations in the quinolone resistance-determining region (QRDR) of gyrA is not yet clearly understood. Here, we report that four clinical M. avium isolates with a mutation in the QRDR of gyrA were highly resistant to FQs. We further clarified the impact of mutations in the QRDR of GyrA proteins by performing in vitro FQ-inhibited DNA supercoiling assays. These results confirmed that, like in Mycobacterium tuberculosis, mutations in the QRDR of gyrA also strongly contribute to FQ resistance in M. avium. Since many FQ-resistant M. avium isolates do have these mutations, the detailed molecular mechanism of FQ resistance in M. avium needs further exploration.


Subject(s)
Fluoroquinolones , Mycobacterium tuberculosis , Fluoroquinolones/pharmacology , Amino Acid Substitution , DNA Gyrase/genetics , DNA Gyrase/metabolism , Mycobacterium avium/genetics , Anti-Bacterial Agents/pharmacology , Mutation , Mycobacterium tuberculosis/metabolism , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...